xkcd: Coordinate Precision but pi (π)?
I tried looking for some answer but found mostly
- People reciting pi
- People teaching how to memorize pi
- How to calculate pi using different formula
- How many digits NASA uses
Update question to be more specific
In case someone see this later, what is the most advanced object you can build or perform its task, with different length of pi?
0, 3 => you can’t make a full circle
1, 3.1 => very wobbly circle
2, 3.14 => perfect hole on a beach
3, 3.142 => ??
4, 3.1416 => ??
5, 3.14159 => ??
Old question below
In practice, the majority of people will never require any extra digit past 3.14. Some engineering may go to 3.1416. And unless you are doing space stuff 3.14159 is probably more than sufficient.
But at which point do a situation require extra digit?
From 3 to 3.1 to 3.14 and so on.My non-existing rubber duck told me I can just plug these into a graphing calculator. facepalm
y=(2πx−(2·3.14x))
y=abs(2πx−(2·3.142x))
y=abs(2πx−(2·3.1416x))
y=(2πx−(2·3.14159x))
Got adequate answer from @dual_sport_dork and @howrar
Any extra example of big object and its minimum pi approximation still welcome.
It seems like ‘3’ is sufficient for real life. It’s probably more precise that I can freehand draw a circle. If I really did need to measure the fencing for a circle with diameter 100’, it’s within the window of padding I would estimate